Pages

Thursday, June 5, 2014

2014 NBA Playoffs Finals Preview

jQuery UI Accordion - Default functionality We're adding smaller and smaller sample sizes as the playoffs progress, so my overall results won't change much.  I am now 28-21 overall after going 3-2 in the Conference Finals:

SAS 5 times: 3-2-0

I will now proceed to provide a similar analysis of the Finals.  As with before, there will be new minutes allocations and updated RPM numbers from ESPN.  Similar to before, all of the computation was done in R and the script I ran will be included.

Series Previews:

*All Vegas numbers from Bovada


List of minutes estimates and xRAPM ratings:

Show/Hide

     Spurs:
player minutes orpm drpm rpm onet dnet net
Boris Diaw 28 0.46 1.06 1.52 0.27 0.62 0.89
Cory Joseph 5 -0.76 -2.81 -3.57 -0.08 -0.29 -0.37
Danny Green 28 0.92 2.89 3.81 0.54 1.69 2.22
Kawhi Leonard 35 0.82 1.84 2.66 0.60 1.34 1.94
Manu Ginobili 27 4.75 0.04 4.79 2.67 0.02 2.69
Marco Belinelli 13 0.77 -3.43 -2.66 0.21 -0.93 -0.72
Matt Bonner 10 2.04 0.69 2.73 0.43 0.14 0.57
Patty Mills 20 3.17 0.56 3.73 1.32 0.23 1.55
Tiago Splitter 10 -1.13 4.60 3.47 -0.24 0.96 0.72
Tim Duncan 33 -0.06 5.34 5.28 -0.04 3.67 3.63
Tony Parker 31 3.03 -0.16 2.87 1.96 -0.10 1.85

     Heat:
player minutes orpm drpm rpm onet dnet net
Chris Andersen 14 0.46 3.78 4.24 0.13 1.10 1.24
Chris Bosh 36 0.39 3.34 3.73 0.29 2.51 2.80
Dwyane Wade 36 1.26 0.78 2.04 0.95 0.59 1.53
Greg Oden 0 -3.69 -0.57 -4.26 0.00 0.00 0.00
James Jones 2 -1.15 0.65 -0.50 -0.05 0.03 -0.02
LeBron James 42 8.87 0.32 9.19 7.76 0.28 8.04
Mario Chalmers 28 0.45 0.90 1.35 0.26 0.53 0.79
Michael Beasley 0 -2.97 -2.88 -5.85 0.00 0.00 0.00
Norris Cole 19 -1.57 -1.79 -3.36 -0.62 -0.71 -1.33
Rashard Lewis 19 -1.93 0.01 -1.92 -0.76 0.00 -0.76
Ray Allen 24 2.57 -2.91 -0.34 1.29 -1.46 -0.17
Shane Battier 12 -0.28 1.28 1.00 -0.07 0.32 0.25
Toney Douglas 2 0.22 -1.73 -1.51 0.01 -0.07 -0.06
Udonis Haslem 6 -4.74 1.09 -3.65 -0.59 0.14 -0.46


R Script:

Show/Hide


library(XML)
library(RCurl)
v.pages <- 1:11            #change if increase in number of pages on http://espn.go.com/nba/statistics/rpm/_/page/1/sort/RPM
v.column.names <- c("player","team","orpm","drpm","rpm")
v.teams.home <- c("sas")
v.teams.away <- c("mia")
v.teams <- c("sas","mia")
hca <- 3.2                #difference between neutral court and home court; this is total hca adjustment, not the adjustment for each team
avg_eff <- 104            #average league points per 100 possessions
df.rpm.3 <- data.frame(player=character(0),team=character(0),orpm=numeric(0),drpm=numeric(0),rpm=numeric(0))
for(page in v.pages)
{
    v.url.rpm <- paste("http://espn.go.com/nba/statistics/rpm/_/page/",page,"/sort/RPM",sep="")
    table <- readHTMLTable(v.url.rpm)[[1]]
    table <- table[as.character((table[,2]))!="NAME",]
    table2 <- cbind(as.data.frame(matrix(unlist(strsplit(as.character(table[,2]),", ")),ncol=2,byrow=TRUE),stringsAsFactors=FALSE)[,1], as.data.frame(matrix(unlist(table[,3]),ncol=1,byrow=TRUE),stringsAsFactors=FALSE), as.data.frame(matrix(unlist(table[,6]),ncol=1,byrow=TRUE),stringsAsFactors=FALSE),as.data.frame(matrix(unlist(table[,7]),ncol=1,byrow=TRUE),stringsAsFactors=FALSE),as.data.frame(matrix(unlist(table[,8]),ncol=1,byrow=TRUE),stringsAsFactors=FALSE))
    table2[,3] <- as.numeric(table2[,3])
    table2[,4] <- as.numeric(table2[,4])
    table2[,5] <- as.numeric(table2[,5])
    colnames(table2) <- v.column.names
    df.rpm.3 <- rbind(df.rpm.3,table2)
}
#minutes distributions and individual xrapm:
df.sas.r4 <- data.frame(player=c("Tony Parker","Tim Duncan","Kawhi Leonard","Marco Belinelli","Boris Diaw","Danny Green","Manu Ginobili","Tiago Splitter","Patty Mills","Cory Joseph","Matt Bonner"),minutes=c(31,33,35,13,28,28,27,10,20,5,10))
df.sas.r4 <- merge(df.sas.r4, df.rpm.3[,c(1,3,4,5)], by="player", all.x=TRUE)
df.mia.r4 <- data.frame(player=c("LeBron James","Dwyane Wade","Chris Bosh","Mario Chalmers","Ray Allen","Norris Cole","Shane Battier","Chris Andersen","Rashard Lewis","Toney Douglas","Michael Beasley","Udonis Haslem","James Jones","Greg Oden"),minutes=c(42,36,36,28,24,19,12,14,19,2,0,6,2,0))
df.mia.r4 <- merge(df.mia.r4, df.rpm.3[,c(1,3,4,5)], by="player", all.x=TRUE)
df.sas.r4$onet <- df.sas.r4$minutes * df.sas.r4$orpm / 48
df.mia.r4$onet <- df.mia.r4$minutes * df.mia.r4$orpm / 48
df.sas.r4$dnet <- df.sas.r4$minutes * df.sas.r4$drpm / 48
df.mia.r4$dnet <- df.mia.r4$minutes * df.mia.r4$drpm / 48
df.sas.r4$net <- df.sas.r4$minutes * df.sas.r4$rpm / 48
df.mia.r4$net <- df.mia.r4$minutes * df.mia.r4$rpm / 48
#team-level xrapm
df.all.r4 <- data.frame(team=v.teams)
df.all.r4$onet <- as.vector(t(data.frame(sas=sum(df.sas.r4$onet),mia=sum(df.mia.r4$onet))))
df.all.r4$dnet <- as.vector(t(data.frame(sas=sum(df.sas.r4$dnet),mia=sum(df.mia.r4$dnet))))
df.all.r4$net <- as.vector(t(data.frame(sas=sum(df.sas.r4$net),mia=sum(df.mia.r4$net))))
df.all.r4$home_perc <- (avg_eff+df.all.r4$onet+hca/4)^14/((avg_eff+df.all.r4$onet+hca/4)^14+(avg_eff-df.all.r4$dnet-hca/4)^14)
df.all.r4$away_perc <- (avg_eff+df.all.r4$onet-hca/4)^14/((avg_eff+df.all.r4$onet-hca/4)^14+(avg_eff-df.all.r4$dnet+hca/4)^14)
#specific round 4 matchups
df.r4.matchups.1 <- data.frame(team=v.teams.home, opponent=v.teams.away, stringsAsFactors = FALSE)
df.r4.matchups.1$team_home_perc <- merge(data.frame(team=df.r4.matchups.1$team),df.all.r4[,c(1,5)], by="team", all.x=TRUE, sort=FALSE)[,2]
df.r4.matchups.1$team_away_perc <- merge(data.frame(team=df.r4.matchups.1$team),df.all.r4[,c(1,6)], by="team", all.x=TRUE, sort=FALSE)[,2]
df.r4.matchups.1$opponent_home_perc <- merge(data.frame(team=df.r4.matchups.1$opponent),df.all.r4[,c(1,5)], by="team", all.x=TRUE, sort=FALSE)[,2]
df.r4.matchups.1$opponent_away_perc <- merge(data.frame(team=df.r4.matchups.1$opponent),df.all.r4[,c(1,6)], by="team", all.x=TRUE, sort=FALSE)[,2]
df.r4.matchups.1$team_matchup_home_perc <- (df.r4.matchups.1$team_home_perc - (df.r4.matchups.1$team_home_perc*df.r4.matchups.1$opponent_away_perc))/(df.r4.matchups.1$team_home_perc + df.r4.matchups.1$opponent_away_perc - (2*df.r4.matchups.1$team_home_perc*df.r4.matchups.1$opponent_away_perc))
df.r4.matchups.1$team_matchup_away_perc <- (df.r4.matchups.1$team_away_perc - (df.r4.matchups.1$team_away_perc*df.r4.matchups.1$opponent_home_perc))/(df.r4.matchups.1$team_away_perc + df.r4.matchups.1$opponent_home_perc - (2*df.r4.matchups.1$team_away_perc*df.r4.matchups.1$opponent_home_perc))
df.r4.matchups.1$series_perc <- df.r4.matchups.1$team_matchup_home_perc^4 + 4*df.r4.matchups.1$team_matchup_home_perc^3*(1-df.r4.matchups.1$team_matchup_home_perc)*(1-(1-df.r4.matchups.1$team_matchup_away_perc)^3) + 6*df.r4.matchups.1$team_matchup_home_perc^2*(1-df.r4.matchups.1$team_matchup_home_perc)^2*((3*df.r4.matchups.1$team_matchup_away_perc^2*(1-df.r4.matchups.1$team_matchup_away_perc))+df.r4.matchups.1$team_matchup_away_perc^3)+4*
df.r4.matchups.1$team_matchup_home_perc*(1-df.r4.matchups.1$team_matchup_home_perc)^3*df.r4.matchups.1$team_matchup_away_perc^3
df.r4.matchups.2 <- df.r4.matchups.1[,c(2,1)]
colnames(df.r4.matchups.2) <- c("team","opponent")
df.r4.matchups.2$team_home_perc <- df.r4.matchups.1$opponent_home_perc
df.r4.matchups.2$team_away_perc <- df.r4.matchups.1$opponent_away_perc
df.r4.matchups.2$opponent_home_perc <- df.r4.matchups.1$team_home_perc
df.r4.matchups.2$opponent_away_perc <- df.r4.matchups.1$team_away_perc
df.r4.matchups.2$team_matchup_home_perc <- 1-df.r4.matchups.1$team_matchup_away_perc
df.r4.matchups.2$team_matchup_away_perc <- 1-df.r4.matchups.1$team_matchup_home_perc
df.r4.matchups.2$series_perc <- 1-df.r4.matchups.1$series_perc
df.r4.matchups <- rbind(df.r4.matchups.1,df.r4.matchups.2)
df.r4.matchups <- df.r4.matchups[order(df.r4.matchups$series_perc, decreasing=TRUE),]

#print results
df.r4.matchups
df.all.r4[order(df.all.r4$net,decreasing=TRUE),c(1:4)]
df.sas.r4
df.mia.r4

4 comments:

  1. Vegas Game 2 lines for 6/8:
    SAS -3.5 (-115) / MIA +3.5 (-105)
    SAS -160 / MIA +140

    I can't make too much out of Game 1 given how the conditions affected everyone. Obviously, they prevented LeBron from playing the end of the game, but they also affected players on both sides before that. Given the line is 1.5 points in the Heat's favor after their loss, I would still abstain from this game.

    ReplyDelete
  2. Vegas Game 3 lines for 6/10:
    SAS +4.5 (-115) / MIA -4.5 (-105)
    SAS +165 / MIA -190

    Other than the actual result of the game, Game 2 was positive for the Spurs. It required an extremely out of the ordinary outside shooting game from LeBron, and Miami pulled the switching defense out of their bag already. It appears that Vegas has adjusted for homecourt advantage a lot more than I would have, especially coming off a Heat win, so as a result, I would bet the Spurs.

    ReplyDelete
  3. Vegas Game 4 lines for 6/12:
    SAS +5 (-105) / MIA -5 (-115)
    SAS +205 / MIA -245

    I'm always wary of betting against the Heat after a loss as anecdotally, their effort improves significantly, especially defensively, more so than a 0.5 point adjustment in their favor would suggest. However, until I actually this is actually proven, I would still bet San Antonio.

    ReplyDelete
  4. Vegas Game 5 lines for 6/15:
    SAS -5 / MIA +5
    SAS -190 / MIA +160

    Starting Allen for Chalmers (instead of for Lewis) allows LeBron to defend Parker without having Wade defend Diaw, which for the Heat might hopefully discourage the Spurs' ball movement. However, the Heat's defensive effort has just not been there the entire series, and the Spurs have been able to get whatever they want offensively. The only real chance for the Heat would be to try to score even more efficiently, but with how the Spurs play Wade on the other end, it's extremely unlikely that would happen. Sure, there should be extra desperation from the Heat, but at this point, I'm doubtful it would make a difference at this point. I would still bet the Spurs.

    ReplyDelete